Call us toll-free

Adriano Reis Lucheta I; Marcio Rodrigues Lambais II

There are four steps in fatty acid oxidation pathway; oxidation, hydration, oxidation, and thiolysis.

Approximate price

Pages:

275 Words

$19,50

ACS Synthetic Biology (ACS Publications)

Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems. In this paper, a series of benzophenone-modified initiator analogues were shown to successfully initiate rubber biosynthesis in vitro in enzymatically-active washed rubber particles from Ficus elastica, Hevea brasiliensis and Parthenium argentatum. Rubber transferases from all three species initiated rubber biosynthesis most efficiently with farnesyl pyrophosphate. However, rubber transferase had a higher affinity for benzophenone geranyl pyrophosphate (Bz-GPP) and dimethylallyl pyrophosphate (Bz-DMAPP) analogues with ether-linkages than the corresponding GPP or DMAPP. In contrast, ester-linked Bz-DMAPP analogues were less efficient initiators than DMAPP. Thus, rubber biosynthesis depends on both the size and the structure of Bz-initiator molecules. Kinetic studies thereby inform selection of specific probes for covalent photolabeling of the initiator binding site of rubber transferase.

"Natural rubber biosynthesis: A branch of the isoprenoid pathway in plants." ..

It requires 7 rounds of this pathway to degrade palmitate (a C16 fatty acid).
A graphic chart of these important metabolic steps may be found in the web site.

Mechanisms of Thrombus Formation — NEJM

Regulation of the cholesterol biosynthetic pathway and its integration with fatty acid biosynthesis in the oleaginous microalga

The absolute configuration of ceriporic acids, their stereoselective biosynthetic pathway and the diversity of their metabolites have been largely discussed ().

Rubber trees are highly susceptible to fungal diseases, so the identification of disease resistance genes is one of the major focuses of rubber tree research. Hypersensitive response (HR) is the early defense response that causes necrosis and cell death to restrict the growth of the pathogen. Plant signaling molecules, salicylic and jasmonic acids, play a critical role in activating systemic acquired resistance (SAR) and induce certain pathogenesis-related (PR) proteins []. The nucleotide-binding site (NBS)-coding R gene family is the largest group of disease resistance genes in plants []. In H. brasiliensis we identified 618 members in this family, comparable to Oryza sativa, which are divided into 6 sub-classes: toll-interleukin-like receptor (TIR)-NBS, coiled-coil (CC)-NBS, NBS, TIR-NBS-LRR, CC-NBS-LRR, and NBS-LRR (in Additional file : Table S19). The majority were those without LRR domains, in contrast with other plants where the LRR-containing classes are typically more abundant. We also identified 147 PR and 96 early defense (SAR and HR) associated genes in the assembly (in Additional file : Tables S20 and S21). All these disease resistance genes were distributed in 665 scaffolds, and NBS-coding genes were often found to be in clusters (e.g., 9 NBS-LRR genes in scaffold 409956). In addition, we have reconstructed the SAR and HR signaling pathways for H. brasiliensis (in Additional file : Figures S4 and S5). The overall information can be potentially exploited for the biotic stress management of the plant.

KEGG PATHWAY: Metabolic pathways - Reference pathway

Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase.

AB - Natural rubber, cis-1,4-polyisoprene, is a vital industrial material synthesized by plants via a side branch of the isoprenoid pathway by the enzyme rubber transferase. While the specific structure of this enzyme is not yet defined, based on activity it is probably a cis-prenyl transferase. Photoactive functionalized substrate analogues have been successfully used to identify isoprenoid-utilizing enzymes such as cis- and trans-prenyltransferases, and initiator binding of an allylic pyrophosphate molecule in rubber transferase has similar features to these systems. In this paper, a series of benzophenone-modified initiator analogues were shown to successfully initiate rubber biosynthesis in vitro in enzymatically-active washed rubber particles from Ficus elastica, Hevea brasiliensis and Parthenium argentatum. Rubber transferases from all three species initiated rubber biosynthesis most efficiently with farnesyl pyrophosphate. However, rubber transferase had a higher affinity for benzophenone geranyl pyrophosphate (Bz-GPP) and dimethylallyl pyrophosphate (Bz-DMAPP) analogues with ether-linkages than the corresponding GPP or DMAPP. In contrast, ester-linked Bz-DMAPP analogues were less efficient initiators than DMAPP. Thus, rubber biosynthesis depends on both the size and the structure of Bz-initiator molecules. Kinetic studies thereby inform selection of specific probes for covalent photolabeling of the initiator binding site of rubber transferase.

Microbial production can be advantageous over the extraction of phytoterpenoids from natural plant sources, but it remains challenging to rationally and rapidly access efficient pathway variants. Previous engineering attempts mainly focused on the mevalonic acid (MVA) or methyl--erythritol phosphate (MEP) pathways responsible for the generation of precursors for terpenoids biosynthesis, and potential interactions between diterpenoids synthases were unexplored. Miltiradiene, the product of the stepwise conversion of (,,)-geranylgeranyl diphosphate (GGPP) catalyzed by diterpene synthases SmCPS and SmKSL, has recently been identified as the precursor to tanshionones, a group of abietane-type norditerpenoids rich in the Chinese medicinal herb . Here, we present the modular pathway engineering (MOPE) strategy and its application for rapid assembling synthetic miltiradiene pathways in the yeast . We predicted and analyzed the molecular interactions between SmCPS and SmKSL, and engineered their active sites into close proximity for enhanced metabolic flux channeling to miltiradiene biosynthesis by constructing protein fusions. We show that the fusion of SmCPS and SmKSL, as well as the fusion of BTS1 (GGPP synthase) and ERG20 (farnesyl diphosphate synthase), led to significantly improved miltiradiene production and reduced byproduct accumulation. The MOPE strategy facilitated a comprehensive evaluation of pathway variants involving multiple genes, and, as a result, our best pathway with the diploid strain YJ2X reached miltiradiene titer of 365 mg/L in a 15-L bioreactor culture. These results suggest that terpenoids synthases and the precursor supplying enzymes should be engineered systematically to enable an efficient microbial production of phytoterpenoids.

Diterpenoid biosynthesis - Hevea brasiliensis (rubber tree) [ Pathway menu | Organism menu | Pathway entry | Download KGML | User data mapping]
Order now
  • " Natural Rubber Biosynthesis and …

    bile acid biosynthesis, neutral pathway bile acids degradation biochanin A conjugates interconversion ..

  • Sumitomo Rubber Industries : ..

    Natural rubber - Wikipedia

  • We obtained all series of the MEP pathway candidate genes by ..

    Terpenoid - Wikipedia

Order now

a Natural-Rubber Producing Plant, Hevea brasiliensis

N2 - Hevea brasiliensis Müll. Arg. is a tree that produces natural rubber, an industrially vital isoprenoid polymer. Biosynthesis of natural rubber is known to take place biochemically by a mevalonate (MVA) pathway, but molecular biological characterization of related genes has been insufficient. From H. brasiliensis, we obtained full-length cDNA of genes encoding all of the enzymes that catalyze the six steps of the MVA pathway. Alignment analysis and phylogenetic analysis revealed that in H. brasiliensis there are three acetyl-CoA acetyltransferase genes, two HMG-CoA synthase (HMGS) genes, and four HMG-CoA reductase (HMGR) genes. Gene expression analysis by type of tissue indicated that MVA pathway genes were highly expressed in latex, as compared to other types of tissue and that HMGS and HMGR, which exist in multiple copies, have different expression patterns. Moreover, these MVA pathway genes in H. brasiliensis were found to complement MVA pathway deletion mutations in yeast.

Terpenoids-Biosynthesis pathway – tsvete

AB - Hevea brasiliensis Müll. Arg. is a tree that produces natural rubber, an industrially vital isoprenoid polymer. Biosynthesis of natural rubber is known to take place biochemically by a mevalonate (MVA) pathway, but molecular biological characterization of related genes has been insufficient. From H. brasiliensis, we obtained full-length cDNA of genes encoding all of the enzymes that catalyze the six steps of the MVA pathway. Alignment analysis and phylogenetic analysis revealed that in H. brasiliensis there are three acetyl-CoA acetyltransferase genes, two HMG-CoA synthase (HMGS) genes, and four HMG-CoA reductase (HMGR) genes. Gene expression analysis by type of tissue indicated that MVA pathway genes were highly expressed in latex, as compared to other types of tissue and that HMGS and HMGR, which exist in multiple copies, have different expression patterns. Moreover, these MVA pathway genes in H. brasiliensis were found to complement MVA pathway deletion mutations in yeast.

2010-11-11 · Terpenoids-Biosynthesis pathway

Hevea brasiliensis Müll. Arg. is a tree that produces natural rubber, an industrially vital isoprenoid polymer. Biosynthesis of natural rubber is known to take place biochemically by a mevalonate (MVA) pathway, but molecular biological characterization of related genes has been insufficient. From H. brasiliensis, we obtained full-length cDNA of genes encoding all of the enzymes that catalyze the six steps of the MVA pathway. Alignment analysis and phylogenetic analysis revealed that in H. brasiliensis there are three acetyl-CoA acetyltransferase genes, two HMG-CoA synthase (HMGS) genes, and four HMG-CoA reductase (HMGR) genes. Gene expression analysis by type of tissue indicated that MVA pathway genes were highly expressed in latex, as compared to other types of tissue and that HMGS and HMGR, which exist in multiple copies, have different expression patterns. Moreover, these MVA pathway genes in H. brasiliensis were found to complement MVA pathway deletion mutations in yeast.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order