Call us toll-free

KW - Ossicular replacement prosthesis

We have used two-photon polymerization for rapid prototyping of Ormocer® middle-ear bone replacement prostheses.

Approximate price

Pages:

275 Words

$19,50

Rapid prototyping of ossicular replacement ..

AB - Materials used in ossicular replacement prostheses must demonstrate appropriate biological compatibility, acoustic transmission, stability, and stiffness properties. Prostheses prepared using Teflon®, titanium, Ceravital and other conventional materials have demonstrated several problems, including migration, perforation of the tympanic membrane, difficulty in shaping the prostheses, and reactivity with the surrounding tissues. We have used two-photon polymerization for rapid prototyping of Ormocer® middle-ear bone replacement prostheses. Ormocer® surfaces fabricated using two-photon polymerization exhibited acceptable cell viability and cell growth profiles. The Ormocer® prosthesis was able to be inserted and removed from the site of use in the frozen human head without fracture. Our results demonstrate that two-photon polymerization is able to create ossicular replacement prostheses and other medical devices with a larger range of sizes, shapes and materials than other microfabrication techniques.

J./ Rapid prototyping of ossicular replacement ..

Our results demonstrate thattwo-photon polymerization is able to create ossicular replacementprostheses and other medical devices with a larger range of sizes,shapes and materials than other microfabrication techniques.

Rapid prototyping of ossicular replacement prostheses

We have used two-photon polymerization for rapid prototyping of Ormocer ® middle-ear bone replacement prostheses.

Our results demonstrate that two-photon polymerization is able to create ossicular replacement prostheses and other medical devices with a larger range of sizes, shapes and materials than other microfabrication techniques.

N2 - Materials used in ossicular replacement prostheses must demonstrate appropriate biological compatibility, acoustic transmission, stability, and stiffness properties. Prostheses prepared using Teflon®, titanium, Ceravital and other conventional materials have demonstrated several problems, including migration, perforation of the tympanic membrane, difficulty in shaping the prostheses, and reactivity with the surrounding tissues. We have used two-photon polymerization for rapid prototyping of Ormocer® middle-ear bone replacement prostheses. Ormocer® surfaces fabricated using two-photon polymerization exhibited acceptable cell viability and cell growth profiles. The Ormocer® prosthesis was able to be inserted and removed from the site of use in the frozen human head without fracture. Our results demonstrate that two-photon polymerization is able to create ossicular replacement prostheses and other medical devices with a larger range of sizes, shapes and materials than other microfabrication techniques.

2PP fabrication of ossicular replacement prostheses is a rapid, ..

ossicular replacement prosthesis

Materials used in ossicular replacement prostheses must demonstrate appropriate biological compatibility, acoustic transmission, stability, and stiffness properties. Prostheses prepared using Teflon®, titanium, Ceravital and other conventional materials have demonstrated several problems, including migration, perforation of the tympanic membrane, difficulty in shaping the prostheses, and reactivity with the surrounding tissues. We have used two-photon polymerization for rapid prototyping of Ormocer® middle-ear bone replacement prostheses. Ormocer® surfaces fabricated using two-photon polymerization exhibited acceptable cell viability and cell growth profiles. The Ormocer® prosthesis was able to be inserted and removed from the site of use in the frozen human head without fracture. Our results demonstrate that two-photon polymerization is able to create ossicular replacement prostheses and other medical devices with a larger range of sizes, shapes and materials than other microfabrication techniques.

Our results demonstrate that two-photon polymerization is able to create ossicular replacement prostheses and other medical devices with a larger range of sizes, shapes and materials than other microfabrication techniques.">

and a new fat interposition total ossicular replacement prosthesis ..
Order now
  • Rapid prototyping of ossicular replacement prostheses.

    OSSICULAR REPLACEMENT PROSTHESIS ..

  • We have used two-photon polymerization for rapid prototyping of ..

    Request (PDF) | Rapid prototyping of..

  • Two-photon polymerization enhances rapid prototyping of ..

    Narayan, R

Order now

The Ormocer prosthesis was able to be ..

An aging population with growing healthcare needs demands multifaceted tools for diagnosis and treatment of health conditions. In the near-future, drug-administration devices, implantable devices/sensors, enhanced prosthesis, artificial and unique functional tissue constructs will become increasingly significant. Conventional technologies for mass-produced implants do not adequately take individual patient anatomy into consideration. Development of novel CAD/CAM rapid prototyping techniques may significantly accelerate progress of these devices for next-generation patient-care. In this dissertation, several novel rapid prototyping techniques have been introduced for next-generation biomedical applications. Two-photon polymerization was developed to microfabricate scaffolds for tissue engineering, microneedles for drugdelivery and ossicular replacement prostheses. Various photoplymers were evaluated for feasibility, mechanical properties, cytotoxicity, and surface properties. Laser direct write using MDW was utilized for developing microstructures of bioceramics such as hydroxyapatite, and viable mammalian osteosarcoma cells. CAD/CAM laser micromachining (CLM) was developed to engineer biointerfaces as surface recognition regions for differential adherence of cells and growth into tissue-like networks. CLM was also developed for engineering multi-cellular vascular networks. Cytotoxic evaluations and growth studies demonstrated VEGF-induced proliferation of HAAE-1 human aortic endothelial cells with inhibition of HA-VSMC human aortic smooth muscle cells. Finally, piiezoelectric inkjet printing was developed for controlled administration of natural and synthetic adhesives to overcome several problems associated with conventional tissue bonding materials, and greatly improve wound repair in next generation eye repair, fracture fixation, organ fixation, wound closure, tissue engineering, and drug delivery devices.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order