Call us toll-free

Hypothesis versus Theory versus Fact

There is no significant change in my health during the times when I drink green tea only or root beer only.

Approximate price

Pages:

275 Words

$19,50

In order for a hypothesis to be sound, hold tight to these tips:

It is both. But that answer requires looking more deeply at the meanings of the words "theory" and "fact."

In everyday usage, "theory" often refers to a hunch or a speculation. When people say, "I have a theory about why that happened," they are often drawing a conclusion based on fragmentary or inconclusive evidence.

The formal scientific definition of theory is quite different from the everyday meaning of the word. It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evidence.

Misconception 1

CORRECTION: It's easy to think that what scientists do in far-off laboratories and field stations has little relevance to your everyday life — after all, not many of us deal with super colliders or arctic plankton on a regular basis — but take another look around you. All the technologies, medical advances, and knowledge that improve our lives everyday are partly the result of scientific research. Furthermore, the choices you make when you vote in elections and support particular causes can influence the course of science. Science is deeply interwoven with our everyday lives. To see how society influences science, visit . To learn more about how scientific advances affect your life, visit

“Fact-Hypothesis-Theory Word Jumble”

CORRECTION: Some students find science class difficult — but this doesn't translate to not being good at science. First of all, school science can be very different from real science. The background knowledge that one learns in school is important for practicing scientists, but it is only part of the picture. Scientific research also involves creative problem-solving, communicating with others, logical reasoning, and many other skills that might or might not be a part of every science class. Second, science encompasses a remarkably broad set of activities. So maybe you don't care much for the periodic table — but that doesn't mean that you wouldn't be great at observing wild chimpanzee behavior, building computer models of tectonic plate movement, or giving talks about psychology experiments at scientific meetings. Often when a student claims to "not be good at science," it really just means that he or she hasn't yet found a part of science that clicks with his or her interests and talents.

CORRECTION: Memorizing facts from a textbook can be boring — but science is much more than the knowledge that makes its way into school books. Science is an ongoing and unfinished process of discovery. Some scientists travel all over the world for their research. Others set up experiments that no one has ever tried before. And all scientists are engaged in a thrilling quest — to learn something brand new about the natural world. Some parts of scientific training or investigations may be tedious, but science itself is exciting! To see how a scientific perspective can make the world a more exciting and intriguing place, visit our side trip .

But is there a "size" of infinity the rationals and the reals?

: When we, in everyday language, say that we believe in something, we may mean many things — that we support a cause, that we have faith in an idea, or that we think something is accurate. The word is often associated with ideas about which we have strong convictions, regardless of the evidence for or against them. This can generate confusion when a scientist claims to "believe in" a scientific hypothesis or theory. In fact, the scientist probably means that he or she "" the idea — in other words, that he or she thinks the scientific idea is the most accurate available based on a critical evaluation of the evidence. Scientific ideas should always be accepted or rejected based on the evidence for or against them — not based on faith, dogma, or personal conviction.

: In everyday language, generally refers to something that a fortune teller makes about the future. In science, the term generally means "what we would expect to happen or what we would expect to observe if this idea were accurate." Sometimes, these scientific predictions have nothing at all to do with the future. For example, scientists have hypothesized that a huge asteroid struck the Earth 4.5 billion years ago, flinging off debris that formed the moon. If this idea were true, we would that the moon today would have a similar composition to that of the Earth's crust 4.5 billion years ago — a prediction which does seem to be accurate. This hypothesis deals with the deep history of our solar system and yet it involves predictions — in the scientific sense of the word. Ironically, scientific predictions often have to do with past events. In this website, we've tried to reduce confusion by using the words and instead of and . To learn more, visit in our section on the core of science.

Order now
  • The "size" of a set is called its .

    Misconception 2 "Theories become facts when they are well supported and/or proven."

  • I totally dig it! * * * and see the most popular Facts!

    Make sure your hypothesis is testable with research and experimentation.

  • He proposes a general hypothesis.

    It is not hard to show that the set of all subsets (called the ) of the rationals has the same "size" as the reals.

Order now

The text in this article is licensed under the .

: In everyday language, suggests the state of being unsure of something. Scientists, however, usually use the word when referring to measurements. The uncertainty of a measurement (not to be confused with the inherent provisionality of all scientific ideas!) is the range of values within which the true value is likely to fall. In science, uncertainty is not a bad thing; it's simply a fact of life. Every measurement has some uncertainty. If you measure the length of a pen with a standard ruler, you won't be able to tell whether its length is 5.880 inches, 5.875 inches, or 5.870 inches. A ruler with more precision will help narrow that range, but cannot eliminate uncertainty entirely. For more on a related idea, see our discussion of below.

History of the Documentary Hypothesis:.

: The word isn't used much in everyday language, but when it is, it is often applied to ideas that have been shown to be untrue. When that's the case — when an idea has been shown to be false — a scientist would say that it has been falsified. A falsifi idea, on the other hand, is one for which there is a conceivable that might produce evidence proving the idea false. Scientists and others influenced by the ideas of the philosopher Karl Popper sometimes assert that only falsifiable ideas are scientific. However, we now recognize that science cannot once-and-for-all prove any idea to be false (or true for that matter). Furthermore, it's clear that evidence can play a role in supporting particular ideas over others — not just in ruling some ideas out, as implied by the falsifiability criterion. When a scientist says , he or she probably actually means something like , the term we use in this website to avoid confusion. A testable idea is one about which we could gather evidence to help determine whether or not the idea is accurate.

In the above coin is hypothesis a fact example we.

: In everyday language, the word is often used to mean a hunch with little evidential support. Scientific theories, on the other hand, are broad explanations for a wide range of phenomena. They are concise (i.e., generally don't have a long list of exceptions and special rules), coherent, systematic, and can be used to make predictions about many different sorts of situations. A theory is most to the scientific community when it is strongly supported by many different lines of evidence — but even theories may be modified or overturned if warranted by new evidence and perspectives. To learn more about scientific theories, visit in our section on how science works.

Say you have a set of observations O and a null hypothesis H 0.

: In everyday language, the word usually refers to an educated guess — or an idea that we are quite uncertain about. Scientific hypotheses, however, are much more informed than any guess and are usually based on prior experience, scientific background knowledge, preliminary observations, and logic. In addition, hypotheses are often supported by many different lines of evidence — in which case, scientists are more confident in them than they would be in any mere "guess." To further complicate matters, science textbooks frequently misuse the term in a slightly different way. They may ask students to make a about the outcome of an experiment (e.g., table salt will dissolve in water more quickly than rock salt will). This is simply a prediction or a guess (even if a well-informed one) about the outcome of an experiment. Scientific hypotheses, on the other hand, have explanatory power — they are explanations for phenomena. The idea that table salt dissolves faster than rock salt is not very hypothesis-like because it is not very explanatory. A more scientific (i.e., more explanatory) hypothesis might be "The amount of surface area a substance has affects how quickly it can dissolve. More surface area means a faster rate of dissolution." This hypothesis has some explanatory power — it gives us an idea of a particular phenomenon occurs — and it is testable because it generates expectations about what we should observe in different situations. If the hypothesis is accurate, then we'd expect that, for example, sugar processed to a powder should dissolve more quickly than granular sugar. Students could examine rates of dissolution of many different substances in powdered, granular, and pellet form to further test the idea. The statement "Table salt will dissolve in water more quickly than rock salt" is not a hypothesis, but an expectation generated by a hypothesis. Textbooks and science labs can lead to confusions about the difference between a hypothesis and an expectation regarding the outcome of a scientific test. To learn more about scientific hypotheses, visit in our section on how science works.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order