Exercises on how to correctly write a hypothesis.
In order for one event to cause another event, the former must precede the latter in time. Hypotheses
What are examples of directional hypothesis?  Quora
It is important to distinguish between biological null and alternative hypotheses and statistical null and alternative hypotheses. "Sexual selection by females has caused male chickens to evolve bigger feet than females" is a biological alternative hypothesis; it says something about biological processes, in this case sexual selection. "Male chickens have a different average foot size than females" is a statistical alternative hypothesis; it says something about the numbers, but nothing about what caused those numbers to be different. The biological null and alternative hypotheses are the first that you should think of, as they describe something interesting about biology; they are two possible answers to the biological question you are interested in ("What affects foot size in chickens?"). The statistical null and alternative hypotheses are statements about the data that should follow from the biological hypotheses: if sexual selection favors bigger feet in male chickens (a biological hypothesis), then the average foot size in male chickens should be larger than the average in females (a statistical hypothesis). If you reject the statistical null hypothesis, you then have to decide whether that's enough evidence that you can reject your biological null hypothesis. For example, if you don't find a significant difference in foot size between male and female chickens, you could conclude "There is no significant evidence that sexual selection has caused male chickens to have bigger feet." If you do find a statistically significant difference in foot size, that might not be enough for you to conclude that sexual selection caused the bigger feet; it might be that males eat more, or that the bigger feet are a developmental byproduct of the roosters' combs, or that males run around more and the exercise makes their feet bigger. When there are multiple biological interpretations of a statistical result, you need to think of additional experiments to test the different possibilities.
the opposite of the research hypothesis. The null hypothesis states that any effects observed after treatment (or associated with a predictor variable) are due to chance alone. Statistically, the question that is being answered is "If these samples came from the same population with regard to the outcome, how likely is the obtained result?"
How to Plan and Write a Testable Hypothesis  wikiHow
I'll confess that I don't really understand Bayesian statistics, and I apologize for not explaining it well. In particular, I don't understand how people are supposed to come up with a prior distribution for the kinds of experiments that most biologists do. With the exception of systematics, where Bayesian estimation of phylogenies is quite popular and seems to make sense, I haven't seen many research biologists using Bayesian statistics for routine data analysis of simple laboratory experiments. This means that even if the cultlike adherents of Bayesian statistics convinced you that they were right, you would have a difficult time explaining your results to your biologist peers. Statistics is a method of conveying information, and if you're speaking a different language than the people you're talking to, you won't convey much information. So I'll stick with traditional frequentist statistics for this handbook.
Another alternative to frequentist statistics is Bayesian statistics. A key difference is that Bayesian statistics requires specifying your best guess of the probability of each possible value of the parameter to be estimated, before the experiment is done. This is known as the "prior probability." So for your chickensex experiment, you're trying to estimate the "true" proportion of male chickens that would be born, if you had an infinite number of chickens. You would have to specify how likely you thought it was that the true proportion of male chickens was 50%, or 51%, or 52%, or 47.3%, etc. You would then look at the results of your experiment and use the information to calculate new probabilities that the true proportion of male chickens was 50%, or 51%, or 52%, or 47.3%, etc. (the posterior distribution).
Hypotheses can either be directional or nondirectional
In the olden days, when people looked up P values in printed tables, they would report the results of a statistical test as "PPP>0.10", etc. Nowadays, almost all computer statistics programs give the exact P value resulting from a statistical test, such as P=0.029, and that's what you should report in your publications. You will conclude that the results are either significant or they're not significant; they either reject the null hypothesis (if P is below your predetermined significance level) or don't reject the null hypothesis (if P is above your significance level). But other people will want to know if your results are "strongly" significant (P much less than 0.05), which will give them more confidence in your results than if they were "barely" significant (P=0.043, for example). In addition, other researchers will need the exact P value if they want to combine your results with others into a .
You should decide whether to use the onetailed or twotailed probability before you collect your data, of course. A onetailed probability is more powerful, in the sense of having a lower chance of false negatives, but you should only use a onetailed probability if you really, truly have a firm prediction about which direction of deviation you would consider interesting. In the chicken example, you might be tempted to use a onetailed probability, because you're only looking for treatments that decrease the proportion of worthless male chickens. But if you accidentally found a treatment that produced 87% male chickens, would you really publish the result as "The treatment did not cause a significant decrease in the proportion of male chickens"? I hope not. You'd realize that this unexpected result, even though it wasn't what you and your farmer friends wanted, would be very interesting to other people; by leading to discoveries about the fundamental biology of sexdetermination in chickens, in might even help you produce more female chickens someday. Any time a deviation in either direction would be interesting, you should use the twotailed probability. In addition, people are skeptical of onetailed probabilities, especially if a onetailed probability is significant and a twotailed probability would not be significant (as in our chocolateeating chicken example). Unless you provide a very convincing explanation, people may think you decided to use the onetailed probability after you saw that the twotailed probability wasn't quite significant, which would be cheating. It may be easier to always use twotailed probabilities. For this handbook, I will always use twotailed probabilities, unless I make it very clear that only one direction of deviation from the null hypothesis would be interesting.
What was Milgram's hypothesis in his experiment?  Quora

Exercises on how to correctly write a hypothesis
Hypothesis  Wikipedia

How to Correctly Write A Hypothesis
Null hypothesis  Wikipedia

Formulation of action hypothesis  WikiEducator
Another way of differentiating among experimental hypotheses is to contrast directional and nondirectional hypothesis
Example Of A Directional Hypothesis Statement
The primary goal of a statistical test is to determine whether an observed data set is so different from what you would expect under the null hypothesis that you should reject the null hypothesis. For example, let's say you are studying sex determination in chickens. For breeds of chickens that are bred to lay lots of eggs, female chicks are more valuable than male chicks, so if you could figure out a way to manipulate the sex ratio, you could make a lot of chicken farmers very happy. You've fed chocolate to a bunch of female chickens (in birds, unlike mammals, the female parent determines the sex of the offspring), and you get 25 female chicks and 23 male chicks. Anyone would look at those numbers and see that they could easily result from chance; there would be no reason to reject the null hypothesis of a 1:1 ratio of females to males. If you got 47 females and 1 male, most people would look at those numbers and see that they would be extremely unlikely to happen due to luck, if the null hypothesis were true; you would reject the null hypothesis and conclude that chocolate really changed the sex ratio. However, what if you had 31 females and 17 males? That's definitely more females than males, but is it really so unlikely to occur due to chance that you can reject the null hypothesis? To answer that, you need more than common sense, you need to calculate the probability of getting a deviation that large due to chance.
Example of a directional hypothesis statement
In the figure above, I used the to calculate the probability of getting each possible number of males, from 0 to 48, under the null hypothesis that 0.5 are male. As you can see, the probability of getting 17 males out of 48 total chickens is about 0.015. That seems like a pretty small probability, doesn't it? However, that's the probability of getting exactly 17 males. What you want to know is the probability of getting 17 or fewer males. If you were going to accept 17 males as evidence that the sex ratio was biased, you would also have accepted 16, or 15, or 14,… males as evidence for a biased sex ratio. You therefore need to add together the probabilities of all these outcomes. The probability of getting 17 or fewer males out of 48, under the null hypothesis, is 0.030. That means that if you had an infinite number of chickens, half males and half females, and you took a bunch of random samples of 48 chickens, 3.0% of the samples would have 17 or fewer males.
Hypothesis Testing  What I Learned Wiki  FANDOM …
1. Mark believes that groceries at Costco will be less expensive than groceries at Safeway. Write a general, directional, and measurable hypothesis related to Mark's observation.
2. Leslie has observed that more small dogs are adopted at animal shelters than large dogs. Write a general, directional, and measurable hypothesis related to Leslie's observation.
3. Amy believes that as the number of years of driving experience people have increases the number of speeding tickets they receive decreases. Write a general, directional, and measurable hypothesis related to Amy's observation.
4. Roger has observed that students who take honors classes in college are less likely to drop out of college than students who do not. Write a general, directional, and measurable hypothesis related to Roger's observation. Sometimes a general observation may lead to several different hypotheses. Read the scenario which follows and write three measurable hypotheses based upon the different groups being compared.
5. Frank notices that when the seventh grade girls are able to do better on the "bend and reach test" flexibility test than seventh grade boys, eighth grade boys, or eighth grade girls.
6. Read the scenario which follows and write three measurable hypotheses based upon the three different variables being considered.
Scientists from the Department of Fish and Game have noticed that trout are more likely to get parasites when they are living in shallower, warmer, and muddy waters.