Call us toll-free

Actin-binding proteins – a unifying hypothesis: Trends …

Actin-binding proteins – a unifying hypothesis | …

Approximate price

Pages:

275 Words

$19,50

Actin-binding proteins - A unifying hypothesis - …

Cell motility is produced by changes in the dynamics and organization of actin filaments. The aim of the experiments described here was to test whether growing neurites contain two actin-binding proteins, gelsolin and profilin, that regulate polymerization of actin and affect non-neuronal cell motility. The distribution of gelsolin, profilin and the microfilaments was compared by immunocytochemistry of leech neurons growing in culture. We observed that microfilaments are enriched in the peripheral motile areas of the neurites. Both gelsolin and profilin are also concentrated in these regions. Gelsolin is abundant in filopodia and is associated with single identifiable microfilament bundles in lamellipodia. Profilin is not prominent in filopodia and shows a diffuse staining pattern in lamellipodia. The colocalization of gelsolin and profilin in motile, microfilament-rich areas supports the hypothesis that they synergistically regulate the actin dynamics that underlie neurite growth.

Actin binding proteins a unifying hypothesis, cheap …

To investigate physiologic functions and structural correlates for actin capping protein (CP), we analyzed site-directed mutations in CAP1 and CAP2, which encode the alpha and beta subunits of CP in Saccharomyces cerevisiae. Mutations in four different regions caused a loss of CP function in vivo despite the presence of mutant protein in the cells. Mutations in three regions caused a complete loss of all aspects of function, including the actin distribution, viability with sac6, and localization of CP to actin cortical patches. Mutation of the fourth region led to partial loss of only one function-formation of actin cables. Some mutations retained function and exhibited the complete wild-type phenotype, and some mutations led to a complete loss of protein and therefore loss of function. The simplest hypothesis that can explain these results is that a single biochemical property is necessary for all in vivo functions. This biochemical property is most likely binding to actin filaments, because the nonfunctional mutant CPs no longer co-localize with actin filaments in vivo and because direct binding of CP to actin filaments has been well established by studies with purified proteins in vitro. More complex hypotheses, involving the existence of additional biochemical properties important for function, cannot be excluded by this analysis.

Jusak (1997) actin binding proteins a unifying hypothesis as

Actin-binding proteins – a unifying hypothesis.

The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 microM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of alpha-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells.

Bursts of actin polymerization in vivo involve the transient appearance of free barbed ends. To determine how rapidly barbed ends might appear and how long they might remain free in vivo, we studied the kinetics of capping protein, the major barbed end capper, binding to barbed ends in vitro. First, the off-rate constant for capping protein leaving a barbed end is slow, predicting a half-life for a capped barbed end of approximately 30 min. This half-life implies that cells cannot wait for capping protein to spontaneously dissociate from capped barbed ends in order to create free barbed ends. However, we find that phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-mono-phosphate (PIP) cause rapid and efficient dissociation of capping protein from capped filaments. PIP2 is a strong candidate for a second messenger regulating actin polymerization; therefore, the ability of PIP2 to remove capping protein from barbed ends is a potential mechanism for stimulating actin polymerization in vivo. Second, the on-rate constant for capping protein binding to free barbed ends predicts that actin filaments could grow to the length of filaments observed in vivo during one lifetime. Third, capping protein beta-subunit isoforms did not differ in their actin binding properties, even in tests with different actin isoforms. A major hypothesis for why capping protein beta-subunit isoforms exist is thereby excluded. Fourth, the proposed capping protein regulators, Hsc70 and S100, had no effect on capping protein binding to actin in vitro.

Actin-binding proteins—a unifying hypothesis

(2004) Actin-binding proteins - a unifying hypothesis.

The actin filament-associated protein AFAP-110 is an SH2/SH3 binding partner for Src. AFAP-110 contains several protein-binding motifs in its amino terminus and has been hypothesized to function as an adaptor molecule that could link signaling proteins to actin filaments. Recent studies using deletional mutagenesis demonstrated that AFAP-110 can alter actin filament integrity in SV40 transformed Cos-1 cells. Thus, AFAP-110 may be positioned to modulate the effects of Src upon actin filaments. In this report, we sought to determine whether (a) AFAP-110 could interact with actin filaments directly and (b) deletion mutants could affect actin filament integrity and cell shape in untransformed fibroblast cells. The data demonstrate that the carboxy terminus of AFAP-110 is both necessary and sufficient for actin filament association, in vivo and in vitro. Analysis of the carboxy terminus revealed a mean 40% similarity with other known actin-binding motifs, indicating a mechanism for binding to actin filaments. AFAP-110 can also induce lamellipodia formation. Contiguous with the alpha-helical, actin-binding motif is an alpha-helical, leucine zipper motif. Deletion of the leucine zipper motif (AFAP(Deltalzip)) followed by cellular expression enabled AFAP(Deltalzip) to alter actin filament integrity and cell shape in untransformed cells as evidenced by the induction of lamellipodia formation. We hypothesize that AFAP-110 may be an important signaling protein that can directly modulate changes in actin filament integrity and induce lamellipodia formation.

The gelsolin family of actin filament binding proteins have highly homologous structures. Gelsolin and adseverin, also known as scinderin, are the most similar members of this family, with adseverin lacking a C-terminal helix found in gelsolin. This helix has been postulated to serve as a calcium-sensitive latch, keeping gelsolin inactive. To test this hypothesis, we have analyzed the kinetics of severing by gelsolin, adseverin, and a gelsolin truncate which lacks the C-terminal latch. We find that the relationship between severing rate and calcium ion concentration differs between gelsolin and adseverin, and suggest that calcium controls one rate-limiting step in the activation of adseverin and two in the activation of gelsolin. In contrast, both proteins are activated equally by protons, and have identical severing kinetics at pHs below 6.3. The temperature sensitivity of severing by adseverin and gelsolin is remarkably different, with gelsolin increasing its severing rate 8-fold per 10 degrees C increase in temperature and adseverin increasing its rate only 2-fold per 10 degrees C increase in temperature. Analysis of the gelsolin construct lacking the C-terminal helix demonstrates that this helix is responsible for the regulatory differences between gelsolin and adseverin. These results support the C-terminal latch hypothesis for the calcium ion activation of gelsolin.

Actin-binding proteins—a unifying hypothesis.
Order now
  • binding proteins—a unifying hypothesis.

    Actin‐binding proteins—a unifying hypothesis

  • binding proteins–a unifying hypothesis.

    Actin-binding proteins — a unifying hypothesis.

  • Actin-binding proteins-a unifying hypothesis.

    Actin‐binding proteins—a unifying hypothesis.

Order now

Vandekerckhove Laboratory of Genetics, State University of Ghent, ..

We conclude that flexible docking of ligand fragments is a valuable tool to rationalize and unify structural data across several ligands. Docking-based interaction maps provide a simple visual confirmation of several observations made from examination of individual or small numbers of x-ray structures, as well as extending the analysis to potential interaction sites yet to be exploited. To some extent, structural bioinformatics tools such as LPC/CSU (ligand-protein contacts and contacts of structural units) () can reveal similar insights by analyzing ligand-protein atom contacts to highlight regions of particular complementarity or, conversely, regions where there is scope to increase the degree of burial or change the type of interaction. However, this analysis cannot be combined across several ligands and visualized as easily as the docking-based method outlined here. A docking solution also explicitly accounts for conformational effects of modifying the ligand (albeit accounting for protein flexibility remains challenging) and can also indicate promising regions of the binding site where no ligand has hitherto been observed to occupy. For actin in particular, we have been able to focus on a small number of residues, such as the hydrophobic interaction between the trisoxazole ring of the kabiramide C and related compounds at Gly-23, and the hydrophobic interaction between the macrolactone ring of reidispongiolide A at Pro-332. This provides impetus for future synthetic work, to target those structural features that are most vital for binding, and represents the first steps to a pharmacophore for the actin binding site.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order